文 | 追问nextquestion
当以ChatGPT为代表的许多大语言模型,能够实现相对准确地预测大脑对语言任务的反应时,是否可以认为大语言模型捕捉到了大脑语言认知加工的一些深层机制?换言之,大脑也采用类似大语言模型的预测编码机制——不断预测并修正错误?
这种推论是否经得起科学的检验?GPT的预测与人脑语言反应的高度相关,究竟是“认知本质”,还是只是“统计上的巧合”?
01 预测编码理论
在20世纪,我们认为大脑从感官中提取知识。21世纪则见证了一场“奇怪的反转”,大脑被视为一个推理的器官,会主动地为外部世界发生的事情构建解释[1]。在这场转变中,预测编码(Predictive coding)理论扮演了重要角色。
20世纪90年代,心理学家Karl Friston提出了预测编码理论,提供了一个关于大脑如何加工的高层次描述。该理论认为,大脑在未来事件发生之前就在不断地尝试对其进行预测,然后将预测与观测进行比较,当预测与实际的感官输入不匹配时,大脑会对预测进行调整与更新以减少这种预测误差(prediction error)。作为一种认知理论,预测编码理论为大脑信息加工提供了一种概念简洁、机制合理的具体目标,获得了许多研究者的青睐。